137 research outputs found

    Resistance to Opportunities of Plastic Recycling

    Get PDF
    Plastics present a vast and pressing issue in modern society. Currently recycling efforts fall dangerously short of dealing with even a small percent of the millions of tons of plastic waste produced yearly across the globe. This article investigates resistance toward plastic recycling in three areas from both a contemporary and a historical context, highlighting the magnitude of the problem and the insufficient nature of current solutions. The three primary areas covered are the plastics problem from (1) a design perspective, (2) a material science perspective, and (3) a systems perspective. Solutions are proposed that emphasize a synergistic collaboration across disciplines and research modes. Ultimately, the conclusions point to a need for stronger engagement at the level of people (both consumers and decision makers) and reintegrating reused and recycled plastics into everyday life to build a solid foundation for success

    POLO Kinase Regulates the Drosophila Centromere Cohesion Protein MEI-S332

    Get PDF
    AbstractAccurate segregation of chromosomes is critical to ensure that each daughter cell receives the full genetic complement. Maintenance of cohesion between sister chromatids, especially at centromeres, is required to segregate chromosomes precisely during mitosis and meiosis. The Drosophila protein MEI-S332, the founding member of a conserved protein family, is essential in meiosis for maintaining cohesion at centromeres until sister chromatids separate at the metaphase II/anaphase II transition. MEI-S332 localizes onto centromeres in prometaphase of mitosis or meiosis I, remaining until sister chromatids segregate. We elucidated a mechanism for controlling release of MEI-S332 from centromeres via phosphorylation by POLO kinase. We demonstrate that POLO antagonizes MEI-S332 cohesive function and that full POLO activity is needed to remove MEI-S332 from centromeres, yet this delocalization is not required for sister chromatid separation. POLO phosphorylates MEI-S332 in vitro, POLO and MEI-S332 bind each other, and mutation of POLO binding sites prevents MEI-S332 dissociation from centromeres

    Kondisi Oseanografi Fisika dan Kimia Perairan di Teluk Miskam Kawasan Pesisir Tanjung Lesung pada Bulan April 2013

    Get PDF
    Pesisir Teluk Miskam memiliki potensi ekonomi terutama di sektor budidaya perikanan laut dan pariwisata, salah satunya di kawasan Tanjung Lesung, dimana melalui Peraturan Pemerintah Daerah Provinsi Banten No. 26 Tahun 2012, kawasan ini ditetapkan sebagai Kawasan Ekonomi Khusus Pariwisata. Pesatnya pembangunan di kawasan pesisir memberi dampak positif terhadap pertumbuhan perekonomian, namun di sisi lain dikhawatirkan dapat memberi dampak negatif terhadap kesehatan lingkungan perairan di sekitarnya, seperti di perairan Teluk Miskam. Guna mengetahui kondisi kualitas perairan Teluk Miskam, maka dilakukan pengukuran parameter fisika dan kimia perairan yang dilakukan pada April 2013 (musim peralihan I). Hasil penelitian ini diharapkan dapat bermanfaat untuk mendukung pengelolaan dan pemanfaatan sumberdaya pesisir yang berkelanjutan di kawasan pesisir Teluk Miskam. Pengambilan data dilakukan di 20 titik pengamatan di perairan Teluk Miskam. Parameter lingkungan yang dianalisa antara lain suhu, salinitas, pH, oksigen terlarut dan konduktivitas, yang diukur menggunakan alat multiparameter secara in-situ. Sampel air juga dibawa ke laboratorium untuk diukur kandungan nutriennya (nitrat, nitrit, ammonia, ortofosfat dan silikat). Data hasil pengukuran kemudian dipetakan untuk mengetahui distribusi spasial-nya, lalu nilainya dibandingkan dengan baku mutu air laut untuk biota laut (Kepmen LH No. 51 Tahun 2004), dan dianalisa kriteria kualitas airnya berdasarkan indeks STORET. Hasil penelitian menunjukkan bahwa Perairan Teluk Miskam cenderung bersifat eutropik, dimana terjadi pengkayaan nitrat dan ortofosfat. Meski demikian, kondisi parameter suhu, pH, DO dan silikat perairan Teluk Miskam masih tergolong baik dalam menunjang biota laut

    Coral life history and symbiosis: Functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Scleractinian corals are the foundation of reef ecosystems in tropical marine environments. Their great success is due to interactions with endosymbiotic dinoflagellates (<it>Symbiodinium </it>spp.), with which they are obligately symbiotic. To develop a foundation for studying coral biology and coral symbiosis, we have constructed a set of cDNA libraries and generated and annotated ESTs from two species of corals, <it>Acropora palmata </it>and <it>Montastraea faveolata</it>.</p> <p>Results</p> <p>We generated 14,588 (<it>Ap</it>) and 3,854 (<it>Mf</it>) high quality ESTs from five life history/symbiosis stages (spawned eggs, early-stage planula larvae, late-stage planula larvae either infected with symbionts or uninfected, and adult coral). The ESTs assembled into a set of primarily stage-specific clusters, producing 4,980 (<it>Ap</it>), and 1,732 (<it>Mf</it>) unigenes. The egg stage library, relative to the other developmental stages, was enriched in genes functioning in cell division and proliferation, transcription, signal transduction, and regulation of protein function. Fifteen unigenes were identified as candidate symbiosis-related genes as they were expressed in all libraries constructed from the symbiotic stages and were absent from all of the non symbiotic stages. These include several DNA interacting proteins, and one highly expressed unigene (containing 17 cDNAs) with no significant protein-coding region. A significant number of unigenes (25) encode potential pattern recognition receptors (lectins, scavenger receptors, and others), as well as genes that may function in signaling pathways involved in innate immune responses (toll-like signaling, NFkB p105, and MAP kinases). Comparison between the <it>A. palmata </it>and an <it>A. millepora </it>EST dataset identified ferritin as a highly expressed gene in both datasets that appears to be undergoing adaptive evolution. Five unigenes appear to be restricted to the Scleractinia, as they had no homology to any sequences in the nr databases nor to the non-scleractinian cnidarians <it>Nematostella vectensis </it>and <it>Hydra magnipapillata</it>.</p> <p>Conclusion</p> <p>Partial sequencing of 5 cDNA libraries each for <it>A. palmata </it>and <it>M. faveolata </it>has produced a rich set of candidate genes (4,980 genes from <it>A. palmata</it>, and 1,732 genes from <it>M. faveolata</it>) that we can use as a starting point for examining the life history and symbiosis of these two species, as well as to further expand the dataset of cnidarian genes for comparative genomics and evolutionary studies.</p

    KARAKTERISTIK DAN POTENSI PERAIRAN SEBAGAI PENDUKUNG PERTUMBUHAN LAMUN DI PERAIRAN TELUK BUYAT DAN TELUK RATATOTOK, SULAWESI UTARA (The Characteristics and Potential of Water to Support the Seagrass Abundance at Buyat and Ratatotok Bay Waters)

    Get PDF
    ABSTRAKPenelitian ini dilakukan untuk mengetahui karakteristik dan potensi perairan Teluk Buyat dan Teluk Ratatotok guna mendukung potensi sumberdaya hayati ekosistem laut dan pesisir, khususnya ekosistem lamun. Penelitian dilakukan pada Juni 2013 pada 6 stasiun di Teluk Buyat dan 4 stasiun di Teluk Ratatotok. Parameter yang diukur in-situ dengan menggunakan alat water quality meter adalah pH, salinitas dan suhu. Parameter nitrat, fosfat dan klorofil-a dianalisis dengan menggunakan metode APHA. Data tutupan lamun diperoleh dengan metode transek kuadrat sesuai Seagrass Watch Method. Hasil pengamatan dipetakan secara spasial menggunakan Ocean Data View. Analisis hubungan antara parameter perairan dan tutupan lamun mengunakan Principal Component Analisis. Hasil penelitian menunjukkan bahwa suhu, salinitas dan klorofil-a pada perairan berperan penting pada tutupan lamun dan secara umum kondisi perairan Teluk Buyat dan Teluk Ratatotok masih dalam kategori baik dan subur serta layak untuk kehidupan biota laut, khususnya ekosistem lamun. ABSTRACTThe aim of this research is to identify the characteristics and potential of Buyat Bay and Ratatotok Bay waters to support natural resources in marine and coastal ecosystems, especially seagrass ecosystem. The research was conducted in June 2013, at 6 stations in Buyat Bay and 4 stations in Ratatotok Bay. The in-situ parameters measured using water quality meter instrument were pH, salinity and temperature. Water sample for nitrate, phosphate and chlorophyll-a concentration were taken to laboratory used APHA method. Seagrass cover data obtained with the square method transect of Seagrass Watch. The observations were mapped spatially using Ocean Data View software. Principal Component Analysis was used to analyse the relationship between the water parameters and seagrass covers. The result shows that temperature, salinity and chlorophyll-a at Buyat and Ratatotok Bay waters are considerably good to support the living of marine biota, especially seagrass ecosystem

    The amphioxus genome and the evolution of the chordate karyotype

    Get PDF
    Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approx520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution

    The \u3ci\u3eChlorella variabilis\u3c/i\u3e NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex

    Get PDF
    Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes

    Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain

    Get PDF
    Background: Cytokines such as interleukin 6 (IL-6) have been implicated in dual functions in neuropsychiatric disorders. Little is known about the genetic predisposition to neurodegenerative and neuroproliferative properties of cytokine genes. In this study the potential dual role of several IL-6 polymorphisms in brain morphology is investigated. Methodology: In a large sample of healthy individuals (N = 303), associations between genetic variants of IL-6 (rs1800795; rs1800796, rs2069833, rs2069840) and brain volume (gray matter volume) were analyzed using voxel-based morphometry (VBM). Selection of single nucleotide polymorphisms (SNPs) followed a tagging SNP approach (e.g., Stampa algorigthm), yielding a capture 97.08% of the variation in the IL-6 gene using four tagging SNPs. Principal findings/results: In a whole-brain analysis, the polymorphism rs1800795 (−174 C/G) showed a strong main effect of genotype (43 CC vs. 150 CG vs. 100 GG; x = 24, y = −10, z = −15; F(2,286) = 8.54, puncorrected = 0.0002; pAlphaSim-corrected = 0.002; cluster size k = 577) within the right hippocampus head. Homozygous carriers of the G-allele had significantly larger hippocampus gray matter volumes compared to heterozygous subjects. None of the other investigated SNPs showed a significant association with grey matter volume in whole-brain analyses. Conclusions/significance: These findings suggest a possible neuroprotective role of the G-allele of the SNP rs1800795 on hippocampal volumes. Studies on the role of this SNP in psychiatric populations and especially in those with an affected hippocampus (e.g., by maltreatment, stress) are warranted.Bernhard T Baune, Carsten Konrad, Dominik Grotegerd, Thomas Suslow, Eva Birosova, Patricia Ohrmann, Jochen Bauer, Volker Arolt, Walter Heindel, Katharina Domschke, Sonja Schöning, Astrid V Rauch, Christina Uhlmann, Harald Kugel and Udo Dannlowsk

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella
    corecore